摘要

Members of the kinesin superfamily are microtubule-based motor proteins that transport molecules/organelles along microtubules. We have identified similar internal motor kinesins, Kinesin-13A, from the cotton Gossypium hirsutum and Arabidopsis thaliana. Their motor domains share high degree of similarity with those of internal motor kinesins of animals and protists in the MCAK/Kinesin13 subfamily. However, no significant sequence similarities were detected in sequences outside the motor domain. In Arabidopsis plants carrying the T-DNA knockout kinesin-13a-1 and kinesin-13a-2 mutations at the Kinesin-13A locus, >70% leaf trichomes had four branches, whereas wild-type trichomes had three. Immunofluorescent results showed that AtKinesin-13A and GhKinesin-13A localized to entire Golgi stacks. In both wild-type and kinesin-13a mutant cells, the Golgi stacks were frequently associated with microtubules and with actin microfilaments. Aggregation/clustering of Golgi stacks was often observed in the kinesin-13a mutant trichomes and other epidermal cells. This suggested that the distribution of the Golgi apparatus in cell cortex might require microtubules and Kinesin-13A, and the organization of Golgi stacks could play a regulatory role in trichome morphogenesis. Our results also indicate that plant kinesins in the MCAK/Kinesin-13 subfamily have evolved to take on different tasks than their animal counterparts.

  • 出版日期2005-2