摘要

By formulating the effect of radar velocity aliasing and the resulting zigzag discontinuities into the cost function for the velocity azimuth display (VAD) analysis, the previously developed alias-robust VAD analysis, called AR-VAD, can estimate the horizontal mean wind by directly fitting the VAD uniform-wind model to raw aliased radial-velocity observations. In this article, the AR-VAD analysis is further developed into a two-step alias-robust variational analysis, called AR-Var, to estimate the radial-velocity field beyond the VAD uniform-wind model from raw aliased radial-velocity observations on each range circle. In the first step, the original AR-VAD analysis is modified to fit the raw aliased radial-velocity observations around each of the two zero radial-velocity points on the selected range circle. The two analyzed radial-velocity fields are then combined into a single radial-velocity field not rigidly constrained by the VAD uniform-wind assumption. This combined radial-velocity field represents an improved fit to the observations over the entire range circle and thus can be used as the first-guess background to refine and perform the AR-Var analysis in the second step. The two-step AR-Var analysis can provide a reliable reference radial-velocity field for the reference check in radar velocity de-aliasing even when the Nyquist velocity is reduced below 12 m s(-1), and this is illustrated by both idealized and real examples.