摘要

Embodied energy is defined as the total energy in joules that can be attributed to bringing an item to its existing state. This paper attempts to quantify the amount of energy that is put into constructing geotechnical structures. In this study, several common retaining wall options are designed for (i) a hypothetical highway widening project based on a typical condition in London, (ii) basement construction of actual high rise buildings in London and (iii) embankments and cuttings as part of an actual highway road widening project. The embodied energy of each design was computed. Results show that the largest variance on embodied energy is the design solutions and within a given design the materials energy dominates over the installation energy and the transportation energy. The choice of Embodied Energy Intensity (EEI) of materials, particularly steel and concrete, is shown to have a large influence on the magnitude of embodied energy. When comparing among different designs of soil retaining structures, a recycled steel wall system generally has less embodied energy than the equivalent concrete wall system, which is more efficient than the equivalent virgin steel system. Results of the three case studies collectively indicate that minimizing materials usage is the key for reducing embodied energy in soil retention projects.

  • 出版日期2011-4