摘要

The oxygen evolution reaction (OER) on the anode is a vital electrocatalytic reaction in the field of energy conversion. Currently, transition metals-based nanomaterials are promising Ir/Ru-alternative OER electrocatalysts in alkaline media. In this work, we report that in-situ direct growth of atomically thick Fe doped Co3O4 holey nanosheets on nickel foam (Fe-Co3O4 H-NSs/NF) using a simple cyanogel-NaBH4 route, which effectively avoids the tedious post-etch process of nanosheets using plasma, acid, alkali, and so on. Benefiting from ultrathin thickness (1.5 nm), numerous holes, and synergistic effect between Co and Fe atoms, Fe-Co3O4 H-NSs/NF provide a large specific surface area (199.12m(2) g(-1)) and highly active catalytic sites for the OER. Meanwhile, nickel foam substrate with three-dimensionally porous structure and high conductivity accelerates molecules/ions/gases transportation and electron transfer. Consequently, Fe-Co3O4 H-NSs/NF with optimal Co/Fe composition show super electrocatalytic performance for the OER, including an overpotential as small as similar to 204 mV at 10 mA cm(-2) current density and a small Tafel slope of 38 mV dec(-1), which is much better than commercial RuO2 nanoparticles.