摘要

In magnetic nanoparticle hyperthermia in cancer treatment, the local blood perfusion rate and the amount of nanofluid delivered to the target region are important factors determining the temperature distribution in tissue. In this study, we evaluate the effects of these factors on the heating pattern and temperature elevations in the muscle tissue of rat hind limbs induced by intramuscular injections of magnetic nanoparticles during in vivo experiments. Temperature distribution in the vicinity of the injection site is measured inside the rat limb after the nanoparticle hyperthermia. The measured temperature elevations at the injection site are 3.5 1.8C and 6.02 0.8C above the measured body temperature, when the injection amount is 0.1 cc and 0.2 cc, respectively. The full width of half maximum (FWHM) of the temperature elevation, an index of heat transfer in the radial direction from the injection site is found to be approximately 31 mm for both injection amounts. The temperature measurements, together with the measured blood perfusion rate, ambient air temperature, and limb geometry, are used as inputs into an inverse heat transfer analysis for evaluation of the specific absorption rate (SAR) by the nanoparticles. It has been shown that the nanoparticles are more concentrated in the vicinity of the injection site when the injection amount is bigger. The current in vivo experimental studies have demonstrated the feasibility of elevating the tissue temperature above 43C under the experimental protocol and equipment used in this study.

  • 出版日期2008