摘要

Liming reduces acidity neutralizes aluminum (Al3+) and manganese (Mn2+) toxicities and increases calcium (Ca2+) and magnesium (Mg2+) concentrations in many acid soils of the world. However, it reduces the availability of other cationic micronutrients that are essential for plant growth. Therefore, an experiment was conducted in greenhouse conditions for assessing the effects of higher lime rates in foliar and grain boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations of 15 soybean genotypes [Glycine max (L) Merrill]. The lime rates were calculated to raise base saturation (V) to 40 and 70%. The soybean genotypes were classified as efficient and moderately efficient in lime-use, the most efficient cultivar was BRS 295RR, and the least efficient was TMG 7161RR and BMX Forca RR. The lime rates x genotypes interaction was significant for foliar Cu. The grain the interactions were significant for B, Cu, Fe, and Mn concentrations. Foliar and grain B, Cu, Fe, Mn, and Zn concentrations varied significantly among the genotypes. The Ca and Mg concentrations in the leaf, grain, and soil showed a positive correlation with foliar B concentrations and a negative correlation with leaf and grain Cu, Mn, and Zn concentrations.

  • 出版日期2017