Aurora Kinase A Inhibition Leads to p73-Dependent Apoptosis in p53-Deficient Cancer Cells

作者:Dar Altaf A; Belkhiri Abbes; Ecsedy Jeffrey; Zaika Alexander; El Rifai Wael*
来源:Cancer Research, 2008, 68(21): 8998-9004.
DOI:10.1158/0008-5472.CAN-08-2658

摘要

We investigated the role of Aurora kinase A (AURKA) in regulating p73-dependent apoptosis using the p53-deficient cancer cell lines H1299, TE7, and HCT116p53(-/-). Overexpression of AURKA led to down-regulation of the TAp73-induced activation of the p53/p73-dependent luciferase reporter plasmid (pG13-luc). The reduction in the TAp73 transcription activity was confirmed by measuring the activity of luciferase reporters for p21/WAF1, and PUMA. The siRNA knockdown of endogenous AURKA reversed these effects and Western blot analysis showed a significant increase in the protein level of TAp73 and its downstream transcription targets, PUMA, NOXA, and p21/WAF1. The coexpression of AURKA together with TAp73 inhibited the activation of the pG13-luc, PUMA-luc, and p21/WAF1-luc reporter plasmids with reduction in the protein levels of TAp73 transcription targets. Treatment with AURKA-selective small molecule inhibitor MLN8054 led to a significant increase in the activities of pG13-luc, PUMA-luc, and p21/WAF1-luc reporter plasmids. This effect was accompanied by a significant increase in the mRNA and protein levels of several TAp73 transcription targets: p21/WAF1, PUMA, and NOXA. Flow cytometry cell cycle analysis, after MLN8054 treatment, showed more than a 2-fold increase in cell death. The apoptotic outcome was corroborated by showing an increase in cleaved caspase-3 protein levels by Western blot. Using terminal deoxynucleotidyi-transferase-mediated dUTP nick-end labeling assay, we showed that the expression of dominant-negative mutant TAp73 expression plasmid (p73DD) counteracted the MLN8054-induced cell death. Taken together, our results indicate that AURKA regulates TAp73-dependent apoptosis and highlight the potential of the AURKA inhibitor MLN8054 in treating cancers that are defective in p53 signaling. [Cancer Res 2008;68(21):8998-9004]

  • 出版日期2008-11-1