摘要

Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner - leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4 - a key player in plasma cell differentiation - which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation. Author Summary The human viruses Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated herpesvirus (KSHV) are members of the gammaherpesvirus family - pathogens that are associated with cancers of lymphoid tissues. Murine gammaherpesvirus 68 (MHV68) infection of laboratory mice provides a small animal model to study how this family of viruses chronically infects their host. The gammaherpesvirus establish a quiescent infection (termed latency) for the lifetime of the individual. However, they are capable of producing progeny virus (termed reactivation) in response to a variety of immune or environmental stimuli. Differentiation of latently infected B cells into plasma cells (the cells producing antibodies) has been associated with reactivation from latency. Notably, the MHV68 M2 protein plays a role in driving differentiation of MHV68 infected B cells to plasma cells. Furthermore, M2 expression results in increased levels of IL-10 (an immune-regulatory cytokine). Here we show that M2 mediated IL-10 production occurs through induction of IRF4 expression, a key player in plasma cell differentiation. This process involves Src kinases and NFAT - both components of B cell receptor signaling. Additionally, mice lacking IRF4 in infected cells show a significant defect in virus reactivation, thereby identifying IRF4 as a crucial component of M2 mediated functions.

  • 出版日期2014-1