摘要

Nanoscaled zerovalent iron (NZVI)-multiwalled carbon nanotubes (CNTs) composite materials were prepared by in situ reduction of Fe2+ onto CNTs for nitrobenzene (NB) degradation. The morphologies and the composites of the prepared materials were characterized by SEM, TEM, and XRD. The results showed that the agglomeration of NZVI decreased with NZVI dispersed well onto the surfaces of CNTs, the particle size of NZVI on CNTs was about 20-50 nm. The BET surface areas of NZVI-CNTs was about 95.8 m(2)/g, which was 39 % higher than that of bare NZVI. For storage, the prepared NZVI-CNTs were concentrated into slurry and stored in situ as fresh slurry without drying. Contrast experiment results showed that the removal efficiency of NB by NZVI-CNTs fresh slurry was 30 % higher than that of vacuum-dried NZVI-CNTs, which indicates that storing in situ as fresh slurry can be an alternative strategy for nanoparticle storage. Batch experiment results showed that NB could be degraded to aniline by NZVI-CNTs rapidly, and the appropriate pH can be conducted at a relatively wide range from 2.0 to 9.0. The optimum mass ratio of iron-carbon was 1:1, and removal efficiency of NB by NZVI-CNTs with this mass ratio can achieve 100 % within 1 min. The degradation process of NB to intermediates was accelerated significantly by NZVI-CNTs, however, there was still a long term for the intermediates to transfer completely into the final product of aniline. The existence of CNTs can improve the formation of aniline through accelerating the electron transfer by forming microscopic galvanic cells with NZVI.