Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Induced in PC12 Cells

作者:Satpute Ravindra*; Bhattacharya Rahul; Kashyap Rajpal S; Purohit Hemant J; Deopujari Jayant Y; Taori Girdhar M; Daginawala Hatim F
来源:Iranian Journal of Pharmaceutical Research, 2012, 11(1): 303-313.

摘要

The imbalance between pro-oxidants and anti-oxidants leads to generation of oxygen/nitrogen free radicals which are implicated in several neurodegenerative diseases. Fagonia arabica is an ethno-pharmacologically important Ayurvedic herb known to have many medicinal properties like anti-inflammatory, analgesic and antipyretic effects. However, its antioxidant potential has not been investigated so far. The present study was designed to investigate the antioxidant potential of F. arabica and its neuroprotective effect on chemical ischemia induced in PC12 cells. Chemical ischemia was induced through exposing the cells to uncoupler of oxidative phosphorylation sodium azide (5.0 mM) and competitive inhibitor of glycolysis 2-deoxy-glucose (2.0 mM) for 2 h followed by 24 h reperfusion with normal culture medium. Total polyphenolic content (TPC) and antioxidant potential of the herb was measured using DPPH and ABTS center dot+ scavenging and ferric ion reducing antioxidant potential (FRAP) assays; its effect on neuroprotection and energy metabolism was also studied. The ischemic injury was characterized by impaired energy status as indicated by decreased ATP levels in the cells, accompanied by increased lactic acid content. Both the changes favourably responded to F. arabica and offered considerable neuroprotection from ischemia and helped to maintain the cellular viability and mitochondrial integrity of the cells. F. arabica showed considerable amount of TPC and antioxidant activity. This study reveals the antioxidant potential of F. arabica and its protective efficacy against ischemia/reperfusion mediated cell death. F. arabica thus can be considered for further studies for the development of the prophylactic or therapeutic agent for the treatment of ischemic stroke.