摘要

Controlled drug delivery systems employing microparticles offer lots of advantages over conventional drug dosage formulations. Microencapsulation technique have been conducted with biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) for its adjustable biodegradability and biocompatibility. In this study, we evaluated two techniques, oil-in-water (o/w) emulsion solvent evaporation and spray drying, for preparation of polymeric microparticles encapsulating a newly synthesized drug, SS-AG20, for the long-term drug delivery of this low-molecular-weight drug with a very short half-life. Drug-loaded microparticles prepared by the solvent evaporation method showed a smoother morphology; however, relatively poor encapsulation efficiency and drastic initial burst were discovered as drawbacks. Spray-dried drug-loaded microparticles had an imperfect surface with pores and distorted portions so that its initial burst was critical (70.05-87.16%) when the preparation was carried out with a 5% polymeric solution. By increasing the concentration of the polymer, the morphology was refined and undesirable initial burst was circumvented (burst was reduced to 35.93-74.85%) while retaining high encapsulation efficiency. Moreover, by encapsulating the drug with various biodegradable polymers using the spray drying method, gradual and sustained drug release, for up to 2 weeks, was achieved.

  • 出版日期2012-10-20

全文