摘要

Despite many people having similar clinical presentation, demographic factors, and clinical care, outcome can differ for those sustaining significant injury such as spinal cord injury (SCI) and traumatic brain injury (TBI). In addition to traditional demographic, social, and clinical factors, variability also may be attributable to innate (including genetic, transcriptomic proteomic, epigenetic) biological variation that individuals bring to recovery and their unique response to their care and environment. Technologies collectively called "-omics" enable simultaneous measurement of an enormous number of biomolecules that can capture many potential biological contributors to heterogeneity of injury/disease course and outcome. Due to the nature of injury and complex disease, and its associations with impairment, disability, and recovery, rehabilitation does not lend itself to a singular "protocolized" plan of therapy. Yet, by nature and by necessity, rehabilitation medicine operates as a functional model of "Personalized Care". Thus, the challenge for successful programs of translational rehabilitation care and research is to identify viable approaches to examine broad populations, with varied impairments and functional limitations, and to identify effective treatment responses that incorporate personalized protocols to optimize functional recovery. The Rehabilomics framework is a translational model that provides an "-omics" overlay to the scientific study of rehabilitation processes and multidimensional outcomes. Rehabilomics research provides novel opportunities to evaluate the neurobiology of complex injury or chronic disease and can be used to examine methods and treatments for person-centered care among populations with disabilities. Exemplars for application in SCI and other neurorehabilitation populations are discussed.

  • 出版日期2014-9