Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and Survivin expression to potentiate ABT-263-induced apoptosis in Non-small Cell Lung Cancer cells harboring EGFR or RAS mutation

作者:Yan, Xiaohui; Li, Pengfei; Zhan, Yihong; Qi, Miao; Liu, Jin; An, Zhifeng; Yang, Weiwei; Xiao, Hui; Wu, Hongmei; Qi, Yitao; Shao, Huanjie*
来源:Biochemical Pharmacology, 2018, 150: 72-85.
DOI:10.1016/j.bcp.2018.01.031

摘要

Non-small cell lung cancer (NSCLC) is the most common malignancy worldwide. A significant fraction of NSCLC carries activating mutations in epidermal growth factor receptor (EGFR) or RAS oncogene. Dihydroartemisinin (DHA) is a semisynthetic derivative of the herbal antimalarial drug artemisinin that has been recently reported to exhibit anti-cancer activity. To develop new therapeutic strategies for NSCLC, we investigated the interactions between DHA and ABT-263 in NSCLC cells harboring EGFR or RAS mutation. Our data indicated that DHA synergized with ABT-263 to trigger Bax-dependent apoptosis in NSCLC cells in culture. DHA treatment antagonized ABT-263-induced Mcl-1 upregulation and sensitized NSCLC cells to ABT-263-triggered apoptosis. Additionally, DHA treatment caused downregulation of Survivin and upregulation of Bim, which also contribute to cotreatment-induced cytotoxicity. Moreover, DHA effectively suppressed STAT3 phosphorylation, and STAT3 inactivation resulted in the downregulation of Mcl-1 and Survivin, functioning to enhance ABT-263-induced cytotoxicity. Finally, cotreatment of DHA and ABT-263 significantly inhibited xenograft growth in nude mice. Together, DHA effectively inhibits STAT3 activity and modulates expression of Mcl-1, Survivin and Bim, thereby synergizing with ABT-263 to trigger apoptosis in NSCLC cells harboring EGFR or RAS mutation. Our data provide a novel therapeutic strategy for EGFR or RAS mutant NSCLC treatment.