摘要

Near-infrared spectroscopy is a noninvasive means of determining real-time changes in regional oxygen saturation of cerebral and somatic tissues. Hypoxic neurologic injuries not only involve devastating effects on patients and their families but also increase health care costs to the society. At present, monitors of cerebral function such as electroencephalograms, transcranial Doppler, jugular bulb mixed venous oximetry, and brain tissue oxygenation monitoring involve an invasive procedure, are operator-dependent, and/or lack the sensitivity required to identify patients at risk for cerebral hypoxia. Although 20th century advances in the understanding and management of resuscitation of critically ill and injured children have focused on global parameters (ie, pulse oximetry, capnography, base deficit, lactate, etc), a growing body of evidence now points to regional disturbances in microcirculation that will lead us in a new direction of adjunctive tissue monitoring and response to resuscitation. In the coming years, near-infrared spectroscopy will be accepted as a way for clinicians to more quickly and noninvasively identify patients with altered levels of cerebral and/or somatic tissue oxygenation and, in conjunction with global physiologic parameters, guide efficient and effective resuscitation to improve outcomes for critically ill and injured pediatric patients.

  • 出版日期2011-5