Autonomic Clouds on the Grid

作者:Murphy Michael A*; Abraham Linton; Fenn Michael; Goasguen Sebastien
来源:Journal of Grid Computing, 2010, 8(1): 1-18.
DOI:10.1007/s10723-009-9142-3

摘要

Computational clouds constructed on top of existing Grid infrastructure have the capability to provide different entities with customized execution environments and private scheduling overlays. By designing these clouds to be autonomically self-provisioned and adaptable to changing user demands, user-transparent resource flexibility can be achieved without substantially affecting average job sojourn time. In addition, the overlay environment and physical Grid sites represent disjoint administrative and policy domains, permitting cloud systems to be deployed non-disruptively on an existing production Grid. Private overlay clouds administered by, and dedicated to the exclusive use of, individual Virtual Organizations are termed Virtual Organization Clusters. A prototype autonomic cloud adaptation mechanism for Virtual Organization Clusters demonstrates the feasibility of overlay scheduling in dynamically changing environments. Commodity Grid resources are autonomically leased in response to changing private scheduler loads, resulting in the creation of virtual private compute nodes. These nodes join a decentralized private overlay network system called IPOP (IP Over P2P), enabling the scheduling and execution of end user jobs in the private environment. Negligible overhead results from the addition of the overlay, although the use of virtualization technologies at the compute nodes adds modest service time overhead (under 10%) to computationally-bound Grid jobs. By leasing additional Grid resources, a substantial decrease (over 90%) in average job queuing time occurs, offsetting the service time overhead.

  • 出版日期2010-3