摘要

In this paper, we investigate the birefringence of polarization maintaining photonic crystal fibers (PM-PCFs) under thermal effect. Modeling and simulation of PM-PCFs under thermal effect are conducted. Birefringence in a PM-PCF as a function of the temperature is measured experimentally. The experimental results are in agreement with theoretical calculation, and show that the relative temperature dependent birefringence coefficient of the PM-PCF, d Delta n/dT/Delta n, is 2.93 x 10(-5)/degrees C, which is typically similar to 35 times less than that of conventional panda fibers. The insensitivity of polarization properties in PM-PCFs to temperature is demonstrated. These findings have important benefits in fiber optic systems and sensors, especially in fiber optic gyroscopes (FOG) where it translates into a lower polarization error and thus a higher measurement precision.

全文