摘要

Tissue engineering has confronted many difficulties mainly as follows: 1) How to modulate the adherence, proliferation, and oriented differentiation of seed cells, especially that of stemcells. 2) Massive preparation and sustained controllable delivery of tissue inducing factors or plasmid DNA, such as growth factors, an giogenesis stimulators, and so on. 3) Development of "intelligent biomimetic materials" as extracellular matrix with a good superficial and structural compatibility as well as biological activity to stimulate predictable, controllable and desirable responses under defined conditions. Molecular biology is currently one of the most exciting fields of research across life sciences, and the advances in a also bring a bright future for tissue engineering to overcome these difficulties. In recent years, tissue engineering benefits a lot from molecular biology. Only a comprehensive understanding of the involved ingredients of tissue engineering (cells, tissue inducing factors, genes, biomaterials) and the subtle relationships between them at molecular level can Lead to a successful manipulation of reparative processes and a better biological substitute. Molecular tissue engineering, the offspring of the tissue engineering and molecular biology, has gained an increasing importance in recent years. It offers the promise of not simply replacing tissue, but improving the restoration. The studies presented in this article put forward this new concept for the first time and provide an insight into the basic principles, status and challenges of this emerging technology.