摘要

In this study, polyurethane (PU)/organomodified montmorillonite (cloisite 30B) is synthesized via in situ polymerization by reaction of an ether-based prepolymer with the isocyanate end groups and adiamine chain extender (4, 4-methylene-bis(2-chloroaniline)) in the presence of different amounts of nanoparticles dispersed in the prepolymer matrix by an ultrasonic mixer for 1 h. The synthesized polymers are cast on a pretreated carbon steel sheet and cured at 120 degrees C in an oven. The PU and its composites have been characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and mechanical testing. The XRD analysis of the cured samples containing 1 to 3 wt% cloisite30B showed intercalation segments in the silicate layers and exfoliation for 0.5 wt% nanoparticles. The highest mechanical properties were obtained using the cured exfoliated silicate layer sample. A twofold increase in the ultimate tensile strength and a 2.3 times increase in the adhesion strength were found for 0.5 wt% organoclay/PU as compared with that of pure PU. In addition, the exfoliated structure sample exhibited a 16% reduction in abrasion compared with that of pure PU.

  • 出版日期2015-3