Nanoscale capacitance: A classical charge-dipole approximation

作者:Lu Jun Qiang*; Gonzalez Jonathan; Sierra Carlos; Li Yang
来源:AIP Advances, 2013, 3(10): 102104.
DOI:10.1063/1.4824622

摘要

Modeling nanoscale capacitance presents particular challenge because of dynamic contribution from electrodes, which can usually be neglected in modeling macroscopic capacitance and nanoscale conductance. We present a model to calculate capacitances of nano-gap configurations and define effective capacitances of nanoscale structures. The model is implemented by using a classical atomic charge-dipole approximation and applied to calculate capacitance of a carbon nanotube nano-gap and effective capacitance of a buckyball inside the nano-gap. Our results show that capacitance of the carbon nanotube nano-gap increases with length of electrodes which demonstrates the important roles played by the electrodes in dynamic properties of nanoscale circuits.

  • 出版日期2013-10

全文