A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries

作者:Recham N; Chotard J N; Dupont L; Delacourt C; Walker W; Armand M; Tarascon J M*
来源:Nature Materials, 2010, 9(1): 68-74.
DOI:10.1038/NMAT2590

摘要

Li-ion batteries have contributed to the commercial success of portable electronics, and are now in a position to influence higher-volume applications such as plug-in hybrid electric vehicles. Most commercial Li-ion batteries use positive electrodes based on lithium cobalt oxides. Despite showing a lower voltage than cobalt-based systems (3.45 V versus 4 V) and a lower energy density, LiFePO(4) has emerged as a promising contender owing to the cost sensitivity of higher-volume markets. LiFePO(4) also shows intrinsically low ionic and electronic transport, necessitating nanosizing and/or carbon coating. Clearly, there is a need for inexpensive materials with higher energy densities. Although this could in principle be achieved by introducing fluorine and by replacing phosphate groups with more electron-withdrawing sulphate groups, this avenue has remained unexplored. Herein, we synthesize and show promising electrode performance for LiFeSO(4)F. This material shows a slightly higher voltage (3.6 V versus Li) than LiFePO(4) and suppresses the need for nanosizing or carbon coating while sharing the same cost advantage. This work not only provides a positive-electrode contender to rival LiFePO(4), but also suggests that broad classes of fluoro-oxyanion materials could be discovered.

  • 出版日期2010-1