摘要

The synchronized behaviors of a noisy small-world neuronal network with delay and diversity is numerically studied by calculating a synchronization measure and plotting firing pattern. We show that delay in the information transmission can induce fruitful synchronization transitions, including transition from phase locking to antiphase synchronization, and transition from antiphase synchronization to complete synchronization. Furthermore, the delay-induced complete synchronization can be changed by diversity, which causes the oscillatory-like transition between antiphase synchronization and complete synchronization.