摘要

Thermal vapor compressor (TVC) is a device for compressing vapor in water-steam cycles and frequently used in desalination systems. Large amounts of useless vapor can be compressed by this device and the efficiency of a desalination unit is effectively enhanced through this process. Motive steam is injected into the TVC through a convergent-divergent nozzle and accelerated to supersonic velocities. The low pressure steam is entrained at the upstream zone and mixed with this highly compressible motive flow within the TVC. In the current study, the flow field of an experimental TVC is scrutinized in both axisymmetric and three-dimensional approaches and compared with experimental measurements. Since the steam collector at the suction surface of the TVC has a curved shape and may undermine the symmetry of the flow on either side of the central axis, the second objective of this study is to reveal the deviation of the symmetric assumption from the real non-symmetric condition of entering steam flow into the TVC. Results show that the presence of a bending at the inlet side has approximately negligible effects on the mixing phenomenon and the flow remains symmetric around the central axis. Hence, there is no need to consider the collector geometry in further simulations and the performance parameters of the TVC would be sufficiently obtained through an axisymmetric method with a substantial reduction in the computational cost and time.

  • 出版日期2013-10