Microscratch testing method for systematic evaluation of the adhesion of atomic layer deposited thin films on silicon

作者:Kilpi Lauri*; Ylivaara Oili M E; Vaajoki Antti; Malm Jari; Sintonen Sakari; Tuominen Marko; Puurunen Riikka L; Ronkainen Helena
来源:Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films , 2016, 34(1): 01A124.
DOI:10.1116/1.4935959

摘要

The scratch test method is widely used for adhesion evaluation of thin films and coatings. Usual critical load criteria designed for scratch testing of coatings were not applicable to thin atomic layer deposition (ALD) films on silicon wafers. Thus, the bases for critical load evaluation were established and the critical loads suitable for ALD coating adhesion evaluation on silicon wafers were determined in this paper as L-CSi1, L-CSi2, L-CALD1, and L-CALD2, representing the failure points of the silicon substrate and the coating delamination points of the ALD coating. The adhesion performance of the ALD Al2O3, TiO2, TiN, and TaCN+Ru coatings with a thickness range between 20 and 600 nm and deposition temperature between 30 and 410 degrees C on silicon wafers was investigated. In addition, the impact of the annealing process after deposition on adhesion was evaluated for selected cases. The tests carried out using scratch and Scotch tape test showed that the coating deposition and annealing temperature, thickness of the coating, and surface pretreatments of the Si wafer had an impact on the adhesion performance of the ALD coatings on the silicon wafer. There was also an improved load carrying capacity due to Al2O3, the magnitude of which depended on the coating thickness and the deposition temperature. The tape tests were carried out for selected coatings as a comparison. The results show that the scratch test is a useful and applicable tool for adhesion evaluation of ALD coatings, even when carried out for thin (20 nm thick) coatings.

  • 出版日期2016-1