摘要

Autism spectrum disorder (ASD) involves aberrant organization and functioning of large-scale brain networks. The aim of this study was to examine whether the resting-state EEG microstate analysis could provide novel insights into the abnormal temporal and spatial properties of intrinsic brain activities in patients with ASD. To achieve this goal, EEG microstate analysis was conducted on the resting-state EEG datasets of 15 patients with ASD and 18 healthy controls from the Healthy Brain Network. The parameters (i.e., duration, occurrence rate, time coverage and topographical configuration) of four classical microstate classes (i.e., class A, B, C and D) were statistically tested between two groups. The results showed that: (1) the occurrence rate and time coverage of microstate class B in ASD group were significantly larger than those in control group; (2) the duration of microstate class A, the duration and time coverage of microstate class C were significantly smaller than those in control group; (3) the map configuration and occurrence rate differed significantly between two groups for microstate class D. These results suggested that EEG microstate analysis could be used to detect the deviant functions of large-scale cortical activities in ASD, and may provide indices that could be used in clinical researches of ASD.