摘要

In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluid-fluid interfacial area on highly complex micro-computed tomography (mu-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (p(c)), wetting phase saturation (S-w) and interfacial area (a(wn)). The basis of this approach is high-resolution mu-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navier-Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluid-fluid interface. In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric mu-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex mu-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution.

  • 出版日期2016