摘要

Laboratory methods are developed for forming an active layer (AL) with a synthesized PtCoCr catalyst (20 wt % Pt) on the F-950 perfluorinated membrane. AL composition and the conditions for forming 3- and 5-layer membrane-electrode assemblies (MEA) are optimized. Reproducible, stable, and high-discharge characteristics are obtained for a hydrogen-air fuel cell (HAFC). At a current density of 0.5 A/cm(2), the voltage of an MEA with cathode based on a PtCoCr catalyst is 0.66-0.68 V, and the maximum power density is 500 mW/cm(2). Replacing the commercial HiSPEC 4000 catalyst (40 wt % Pt) with PtCoCr (20 wt % Pt) in the AL composition of the cathode makes it possible to reduce Pt consumption by a factor of two without decreasing MEA discharge characteristics. The parameters that characterize the catalytic activity of catalysts under model conditions and in the MEA cathode composition are shown to be correlated.

  • 出版日期2011-3

全文