摘要

Degradable electrically conducting hydrogels (DECHs), which combine the unique properties of degradable polymers and electrically conducting hydrogels, were synthesized by introducing biodegradable segments into conductive hydrogels. These DECHs were obtained by joining together the photopolymerized macromer acrylated poly(D,L-lactide)-poly(ethylene glycol)-poly(D,L-lactide) (AC-PLA-PEG-PLA-AC), glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA) network and aniline tetramer (AT) by the coupling reaction between AT and the GMA The electrical conductivity and swelling behavior of these DECHs were tuned by changing the AT content in the hydrogels, the cross-linking degree, and the environmental pH value. The good electroactivity and thermal stability of these hydrogels were demonstrated by UV-vis spectroscopy, cyclic voltammetry, and TGA tests. The chemical structure and morphology of these polymers were characterized by NMR, FT-IR, SEC, and SEM. These hydrogels possessing both degradability and electrical conductivity represent a new class of biomaterial and will lead to various new possibilities in biomedical applications.

  • 出版日期2011-3-8