摘要

We have studied a mutant Moloney murine leukemia virus with a deletion in reverse transcriptase (RT) which is predicted to make its RNase H domain resemble structurally that of human immunodeficiency virus RT. This deletion was based on improved RNase H homology alignments made possible by the recently solved three-dimensional structure for Escherichia coli RNase H. This mutant Moloney murine leukemia virus RT was fully active in the oligo(dT)-poly(rA) DNA polymerase assay and retained nearly all of wild-type RT's RNase H activity in an in situ RNase H gel assay. However, proviruses reconstructed to include this deletion were noninfectious. Minus-strand strong-stop DNA was made by the deletion mutant, but the amount of minus-strand translocation was intermediate to the very low level measured with RNase H-null virions and the high level seen with wild-type RT. The average length of translocated minus-strand DNA was shorter for the deletion mutant than for wild type, suggesting that mutations in the RNase H domain of RT also affect DNA polymerase activity.

  • 出版日期1992-2