摘要

Ordered mesoporous carbon-Au nanoparticles (OMC-Au) nanocomposites were synthesized by a one-step chemical reduction route. Due to the large surface area and high conductivity of OMC, good biocompatibility of OMC and Au nanoparticles, a mediator-free glucose biosensor was fabricated by immobilizing glucose oxidase (GOD) on the OMC-Au nanocomposites modified glassy carbon (GC) electrode. Direct electron transfer between GOD and the electrode was achieved and the electron transfer rate constant (k(s)) was calculated to be 5.03 s(-1). The Michalis-Menten constant (K-M(app)) value of GOD immobilized on the OMC-Au/GC electrode surface was found to be 0.6 mM. The glucose biosensor exhibits a linear range from 0.05 to 20.0 mM. This biosensor also shows good reproducibility, excellent stability and the negligible interferences from ascorbic acid and uric acid.