摘要

A moving deck is an important (kinematic) excitation source for the inclined cable in cable-stayed bridges. In ideal cases, the deck motion is assumed to be harmonic oscillation and cable's dynamic effects on the deck are neglected. As a refined version, an inclined cable excited by a massive non-ideal moving deck, i.e., the deck's oscillation, is slowly modulated by the cable and thus not exactly harmonic is investigated in an asymptotically coupled formulation for understanding cable-deck dynamic interactions. More explicitly, by ordering the deck/cable mass ratio as a large parameter, the coupled system is reduced using asymptotic approximations and multi-scale expansions. After neglecting the reduced model's nonlinear terms, firstly, cable-deck linear coupled modes are obtained, leading to two different kinds of linear modal dynamics, i.e., the cable-dominated one and the deck-dominated one, whose asymptotic characteristics are also revealed. Then cable's forced nonlinear vibrations, excited by the deck's modulated oscillation (i.e., non-ideal moving deck), are fully investigated. Nonlinear frequency responses of the cable-deck coupled system are found, and the dynamic effects on the cable's periodic and quasi-periodic behaviors, due to cable-deck coupling (characterized by the deck/cable mass ratio), cable's inclinations, and boundary damping, are also presented.