摘要

The vulnerability of civil engineering structures with fundamental frequency, say roughly above 1 Hz, (or buildings having less than ten stories), when exposed to the strong motion phase of an earthquake is considerably reduced by means of base isolation. The low-pass filter for isolating horizontal vibrations is redesigned where the classical elastomeric bearings are substituted by a number of prestressed helical steel springs with pivoted columns along their vertical axes carrying a fraction of the dead weight and guiding the remaining horizontal motion. The base-isolated building in its fundamental mode is considered to be rigid and low-cost tuned liquid column gas dampers (TLCGDs), in optimal arrangement within the plan of the basement of the building, supply the effective damping of the remaining horizontal vibrations. TLCGD-tuning in a first step is performed by a simple transformation of the well-documented optimal parameters of the tuned mass damper (TMD) followed by fine-tuning in state space. The action of the passive damping device is commonly considered to be sufficient. Since the gas-spring effect somewhat counter acts changes in fluid mass, the absorber can be used as a water reservoir. Compatible sliding elements are innovatively designed to resist the motion of the building relative to the ground for sufficiently small disturbances by static friction, thus complete the isolation system. However, during seismic excitation, the frictional contact is released over much of the time to avoid excessive wear.

  • 出版日期2012-10