摘要

Spin injection in organic and molecular spintronic devices is largely defined by the electronic and magnetic structure of the constituting organic/ferromagnetic "spinterfaces". Unlike most of the previous studies involving highly interactive organic/metallic interfaces, we present here the valence electronic structure of a weakly hybridized interface between C-60 and epitaxial Fe3O4(001), which is unraveled for the first time by means of synchrotron-based photoelectron spectroscopy. Using resonant excitation of Fe 2p core electrons into the unoccupied 3d states, we are able to extract the effect of C-60 adsorption on the different ionic sites of the mixed valence magnetic oxide. We elucidate, using a proposed model, that electron donation from C-60 leads to surface charge rebalancing in Fe3O4, which is accompanied by an enhancement of the conductivity, where the half-metallic nature of the ferrite is largely preserved. These observations, which have so far not been reported for existing organic/metallic systems, are expected to play a significant role in spin transport across this novel interface. Our work showcases the fascinating physical phenomena unique to organic/magnetic oxide spinterfaces, and offers a new pathway towards interface engineering for organic spintronic applications.