摘要

In this paper we describe a computational methodology that is specifically designed for studying three-dimensional geodynamic processes governed by heterogeneous visco-plastic Stokes flow. The method employs a hybrid spatial discretization consisting of a Q(2)-P-1(disc) mixed finite element formulation for the Stokes problem, coupled to a material-point formulation which is used for representing material state and history-dependent variables. The applicability and practicality of this methodology is realized through the development of an efficient, scalable and robust variable viscosity Stokes preconditioner. In this work, these objectives are achieved through exploiting matrix-free operators and a geometric multigrid preconditioner employing hybrid coarse level operators, Chebyshev smoothers and hybrid Krylov coarse level solvers. The robustness and parallel efficiency of this strategy is demonstrated using an idealized geodynamic model. Lastly, we apply the new methodology to study geodynamic models of continental rifting and break-up in order to understand the diverse range of passive continental margins we observe on Earth today.

  • 出版日期2015-6-15