摘要

Spinal cord injury (SCI) results in significant tissue damage that underlies functional impairments. Pharmacological interventions to confer neuroprotection and promote cell replacement are essential for SCI repair. We previously reported that Neuregulin-1 (Nrg-1) is acutely and permanently downregulated after SCI. Nrg-1 is a critical growth factor for differentiation of neural precursor cells (NPCs) into myelinating oligodendrocytes. We showed that intrathecal delivery of Nrg-1 enhances oligodendrocyte replacement following SCI. While an effective delivery system, intrathecal and systemic administration of growth factors with diverse biological targets may pose adverse off-target effects. Here, we have developed and optimized an injectable biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles system for sustained and prolonged intraspinal delivery of Nrg-1 in SCI. Recombinant human Nrg-1 beta 1 peptide was encapsulated into PLGA microparticles. Optimal Nrg-1 release rate and duration were achieved by manipulating the porosity and size of PLGA particles. Our in vitro analysis showed a direct correlation between particle size and porosity with Nrg-1 release rate, while Nrg-1 loading efficiency in PLGA microparticles was inversely correlated with particle porosity. In SCI, local intraspinal injection of PLGA-Nrg-1 microparticles maintained significantly higher tissue levels of Nrg-1 for a long-term duration compared to Nrg-1 delivered intrathecally by osmotic pumps. Bioactivity of Nrg-1 in PLGA microparticles was verified by promoting oligodendrocyte differentiation of NPCs in vitro, and preservation of oligodendrocytes and axons in SCI. PLGA-Nrg-1 also attenuated neuroinflammation and glial scarring following SCI. We show, for the first time, the feasibility, efficacy and safety of PLGA microparticle system for local and controlled administration of Nrg-1 in SCI.

  • 出版日期2017-9-10