摘要

Cancers of diverse cell lineages express high levels of cyclin E, and in various studies, cyclin E overexpression correlates with increased tumor aggression. One way that normal control of cyclin E expression is disabled in cancer cells is via loss-of-function mutations sustained by FBXW7. This gene encodes the Fbw7 tumor suppressor protein that provides substrate specificity for a ubiquitin ligase complex that targets multiple oncoproteins for degradation. Numerous other mechanisms besides Fbw7 mutations can deregulate cyclin E expression and activity in cancer cells. Recent reports demonstrate that inappropriate cyclin E expression may have far-reaching biological consequences for cell physiology, including altering gene expression programs governing proliferation, differentiation, survival and senescence. In this Perspective, we discuss the function of mammalian cyclin E in the context of these new data as well as the complex network that connects cyclin E functions to the cellular controls regulating its expression and activity.