摘要

Cytochrome c (cyt c) and caspase-9 were critical biomarkers in mitochondria-mediated apoptosis. A novel electrochemical immunosensor was developed for in situ analysis of cyt c and caspase-9 in the cytosol. Gold nanoparticle-polydopamine (AuNP/PDA) composites were used to fabricate the interface of the sensor. The anti-cyt c or anti-caspase-9 functionalized-immunosensor provided a biomimetic interface for immunosensing of cyt c or caspase-9 in Hela cells during apoptosis. The changes in the expression level of cyt c and caspase-9 in the cytosol upon curcumin-induced apoptosis were detected by using the proposed method, and also the influence of different concentrations and incubation times of curcumin-induced Hela cells was investigated. This method achieved a linear range (0.1-100 mu M) for standard cyt c and caspase-9, with a detection limit of 0.03 +/- 0.01 mu M for standard cyt c and 0.08 +/- 0.02 mu M for standard caspase-9. Moreover, this method was used to detect cells which could detect as low as 100 cells which expressed cyt c and caspase-9, and also the results are in good agreement with standard flow cytometry analysis. The developed electrochemical immunosensor offered a simple and rapid approach for sensitive evaluation of apoptosis markers with considerable specificity and reproducibility, and also the developed strategy could be of great importance in clinical diagnosis and therapeutic research.