摘要

Purpose: To investigate a method of dual k-space unaliasing by Fourier-encoding the overlaps using the temporal dimension (DUNFOLD), a novel technique for high temporal resolution 3D functional brain imaging. Methods: Two different methods of unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), excitation UNFOLD (XUNFOLD) and acquisition UNFOLD, were merged to obtain a DUNFOLD. The feasibility of the DUNFOLD technique was examined by using a phantom and comparing its result to that of the previous XUNFOLD method. A high temporal resolution 3D functional brain imaging study was also performed, focusing on the microvascular response. Three different temporal resolutions, 20 s, 10 s and 5 s, were tested with a spatial resolution of 0.6(3) mm(3) to evaluate the method. The vascular regions of interest were selected for data analysis. Results: The DUNFOLD method achieved a temporal resolution approximately four times greater than those of the UNFOLD and XUNFOLD methods, without apparent signal degradation. The vascular responses in the visual cortex were obtained with high spatiotemporal resolution by using the DUNFOLD method during visual stimulation. For small vessels, the percentage change in the signal reached 18%. Conclusion: The proposed DUNFOLD method yields a temporal resolution higher than those of the previous UNFOLD and XUNFOLD methods. The conclusions are likely to be important for functional imaging studies, especially those targeting cerebral vascular responsiveness.

  • 出版日期2016-2