摘要

A fast multipole boundary element method (BEM) for solving general uncoupled steady-state thermoelasticity problems in two dimensions is presented in this paper. The fast multipole BEM is developed to handle the thermal term in the thermoelasticity boundary integral equation involving temperature and heat flux distributions on the boundary of the problem domain. Fast multipole expansions, local expansions and related translations for the thermal term are derived using complex variables. Several numerical examples are presented to show the accuracy and effectiveness of the developed fast multipole BEM in calculating the displacement and stress fields for 2-D elastic bodies under various thermal loads, including thin structure domains that are difficult to mesh using the finite element method (FEM). The BEM results using constant elements are found to be accurate compared with the analytical solutions, and the accuracy of the BEM results is found to be comparable to that of the FEM with linear elements. In addition, the BEM offers the ease of use in generating the mesh for a thin structure domain or a domain with complicated geometry, such as a perforated plate with randomly distributed holes for which the FEM fails to provide an adequate mesh. These results clearly demonstrate the potential of the developed fast multipole BEM for solving 2-D thermoelasticity problems.