摘要

In the present study we examined the use of perceptual learning to improve motion processing in older and younger individuals. Using the Perceptual Template Model (Lu %26 Dosher, 1998, 1999), age-related differences in baseline perceptual inefficiencies and changes due to training were assessed for additive internal noise, tolerance to external noise, and internal multiplicative noise. In Experiments 1 and 2 we trained participants by manipulating contrast in noise embedded sine-wave gratings and Random Dot Cinematograms (RDCs). The results indicate that older observers have higher additive internal noise and lower tolerance to external noise compared to younger observers. The rate of perceptual learning in older observers was found to be similar to that of younger observers suggesting that plasticity of motion processing mechanisms is well preserved in advancing age. Transfer of learning between sine-wave gratings and RDCs for both older and younger observers was examined in an analysis of pre/post-test measurements. The results indicate that transfer of learning occurred for both age groups. This suggests that older individuals maintain a sufficient degree of plasticity to allow generalization between sine-wave gratings and RDCs. In addition, training with RDCs was found to produce greater perceptual learning than training with sine-wave gratings. These experiments provide important findings regarding changes in perceptual efficiency for motion perception in older adults and suggest that perceptual learning is an effective approach for recovering from age-related declines in visual processing.

  • 出版日期2012-5-15