摘要

In addition to possessing excellent chemical, mechanical, and thermal stability, polyimides and polyetherimides have excellent solubility in many solvents, which renders them suitable for membrane preparation. Two new monomers [a pentiptycene-based dianhydride (PPDAn) and a pentiptycene imide-containing diamine (PPImDA)] and a pentiptycene-based polyimide [PPImDA-4,4-hexafluoroisopropylidene diphthalic anhydride (PPImDA-6FDA)] have been synthesized and characterized by FTIR and (HNMR)-H-1 spectroscopy, gel-permeation chromatography, mass spectrometry, X-ray photoelectron spectroscopy, thermogravimetric analysis, differential scanning calorimetry, BET surface area, and X-ray diffraction. High-molecular-weight PPImDA-6FDA has remarkable thermal stability and excellent solubility in common organic solvents. It also has an extraordinarily high fractional free volume (0.233) owing to the presence of -C(CF3)(2)- units, the rigid diamine, and the pentiptycene moiety in the polymer structure. It has high CO2 permeability (812Barrer) owing to poor chain packing, which is caused by the fact that its rigid groups veil the influence of the ethereal oxygen groups in its backbone. It has the highest CO2 permeability among all reported pentiptycene-containing polymers (about six times higher than that of the most permeable one) without sacrificing selectivity. The high free volume, good microporosity, high solubility in many solvents, and remarkable thermal stability of PPImDA-6FDA point to the great potential of this polymer for CO2 removal.

  • 出版日期2018-1-23