0 Citations
0 Reads
Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia
Buedel Burkhard
Williams Wendy J
Reichenberger Hans
Biogeosciences, 15(2), pp 491-505, 2018-1-26
Summary
Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6% of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25% of the wet season and of that period 48.6% was net photosynthesis (NP) and 51.4% dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6% due to water supersaturation. In total, the biocrust fixed 229.09 mmolCO(2) m(-2) yr(-1), corresponding to an annual carbon gain of 2.75 gm(-2) yr(-1). Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmolCO(2) m(-2) was found for the 2 months, resulting in corrected annual rates of 143.1 mmolCO(2) m(-2) yr(-1), equivalent to a carbon gain of 1.7 gm(-2) yr(-1). The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 mu mol photonsm 2 s(-1) photosynthetic active radiation. The Boodjamulla biocrust exhibited high seasonal variability in CO2 gas exchange pattern, clearly divided into metabolically inactive winter months and active summer months. The metabolic active period commences with a period of up to 3 months) of carbon loss, likely due to reestablishment of the crust structure and restoration of NP prior to about a 4-month period of net carbon gain. In the Gulf Savannah biocrust system, seasonality over the year investigated showed that only a minority of the year is actually suitable for biocrust growth and thus has a small window for potential contribution to soil organic matter.
Keywords
--
Institution
--
Select Groups
Select Contacts
swap_vert Order by date
Order by date Order by name