Dynamics of Cellular Responses to Radiation

作者:Wodarz Dominik*; Sorace Ron; Komarova Natalia L
来源:PLoS Computational Biology, 2014, 10(4): e1003513.
DOI:10.1371/journal.pcbi.1003513

摘要

Understanding the consequences of exposure to low dose ionizing radiation is an important public health concern. While the risk of low dose radiation has been estimated by extrapolation from data at higher doses according to the linear non-threshold model, it has become clear that cellular responses can be very different at low compared to high radiation doses. Important phenomena in this respect include radioadaptive responses as well as low-dose hyper-radiosensitivity (HRS) and increased radioresistance (IRR). With radioadaptive responses, low dose exposure can protect against subsequent challenges, and two mechanisms have been suggested: an intracellular mechanism, inducing cellular changes as a result of the priming radiation, and induction of a protected state by inter-cellular communication. We use mathematical models to examine the effect of these mechanisms on cellular responses to low dose radiation. We find that the intracellular mechanism can account for the occurrence of radioadaptive responses. Interestingly, the same mechanism can also explain the existence of the HRS and IRR phenomena, and successfully describe experimentally observed dose-response relationships for a variety of cell types. This indicates that different, seemingly unrelated, low dose phenomena might be connected and driven by common core processes. With respect to the inter-cellular communication mechanism, we find that it can also account for the occurrence of radioadaptive responses, indicating redundancy in this respect. The model, however, also suggests that the communication mechanism can be vital for the long term survival of cell populations that are continuously exposed to relatively low levels of radiation, which cannot be achieved with the intracellular mechanism in our model. Experimental tests to address our model predictions are proposed. Author Summary The effect of low-dose radiation on cells and tissues is a public health concern, because the human population is exposed to low-dose ionizing radiation coming from a variety of sources, such as cosmic rays, soil radioactivity, environmental contaminations, and various medical procedures. At low doses of radiation, phenomena are observed that do not occur at higher doses, such as radioadaptive responses as well as low-dose hyper-radiosensitivity (HRS) and increased radioresistance (IRR), which are so far not fully understood. Each of these phenomena have been investigated separately, and specific mechanisms have been suggested to explain them. Using mathematical models that are successfully fitted to experimental data under a variety of conditions, we show that a set of basic and documented assumptions about cellular responses to low-dose radiation can explain all three low-dose phenomena, indicating that they are inter-related. According to the model, these phenomena are brought about by the multi-factorial interactions that underlie the population dynamics of the cells involved, and this provides a new framework to understand these responses, and to evaluate the risk to human health posed by exposure to low-dose radiation.

  • 出版日期2014-4