Activation of beta- and alpha 2-adrenergic receptors stimulate tubulin polymerization and promote the association of G beta gamma with microtubules in cultured NIH3T3 cells

作者:Sierra Fonseca Jorge A; Bracamontes Christina; Saldecke Jessica; Das Siddhartha; Roychowdhury Sukla
来源:Biochemical and Biophysical Research Communications, 2018, 503(1): 102-108.
DOI:10.1016/j.bbrc.2018.05.188

摘要

Microtubules (MTs) constitute a crucial part of the cytoskeleton and are essential for cell division and differentiation, cell motility, intracellular transport, and cell morphology. Precise regulation of MT assembly and dynamics is essential for the performance of these functions. Although much progress has been made in identifying and characterizing the cellular factors that regulate MT assembly and dynamics, signaling events in this process is not well understood. G beta gamma, an important component of the G protein-coupled receptor (GPCR) signaling pathway, has been shown to promote MT assembly in vitro and in cultured NIH3T3 and PC12 cells. Using the MT depolymerizing agent nocodazole, it has been demonstrated that the association of G beta gamma with polymerized tubulin is critical for MT assembly. More recently, G beta gamma has been shown to play a key role in NGF-induced neuronal differentiation of PC12 cells through its interaction with tubulin/MTs and modulation of MT assembly. Although NGF is known to exert its effect through tyrosine kinase receptor TrkA, the result suggests a possible involvement of GPCRs in this process. The present study was undertaken to determine whether agonist activation of GPCR utilizes G beta gamma to promote MT assembly. We used isoproterenol and UK 14,304, agonists for two different GPCRs (beta- and alpha 2-adrenergic receptors, respectively) known to activate Gs and Gi respectively, with an opposing effect on production of cAMP. The results demonstrate that the agonist activation of beta- and alpha 2-adrenergic receptors promotes the association of G beta gamma with MTs and stimulates MT assembly in NIH3T3 cells. Interestingly, the effects of these two agonists were more prominent when the cellular level of MT assembly was low (30% or less). In contrast to MT assembly, actin polymerization was not affected by isoproterenol or UK 14, 304 indicating that the effects of these agonists are limited to MTs. Thus, it appears that, upon cellular demand, GPCRs may utilize G beta gamma to promote MT assembly. Stimulation of MT assembly appears to be a novel function of G protein-mediated signaling.

  • 出版日期2018-9-3