摘要

Near-infrared (NIR) spectroscopy has been widely used in the analysis fields of traditional Chinese medicine. It has the advantages of fast analysis, no damage to samples and no pollution. In this research, a fast quantitative model for zinc oxide (ZnO) content in mineral medicine calamine was explored based on NIR spectroscopy. NIR spectra of 57 batches of calamine samples were collected and the first derivative (FD) method was adopted for conducting spectral pretreatment The content of ZnO in calamine sample was determined using ethylenediarninetetraacetic acid (EDTA) titration and taken as reference value of NIR spectroscopy. 57 batches of calamine samples were categorized into calibration and prediction set using the Kennard-Stone (K-S) algorithm. Firstly, in the calibration set, to calculate the correlation coefficient (r) between the absorbance value and the ZnO content of corresponding samples at each wave number. Next, according to the square correlation coefficient (r(2)) value to obtain the top 50 wave numbers to compose the characteristic spectral bands (4081.8-4096.3, 4188.9-4274.7, 4335.4, 4763.6,4794.4-4802.1, 4809.9, 4817.6-4875.4 cm(-1)), which were used to establish the quantitative model of ZnO content using back propagation artificial neural network (BP-ANN) algorithm. Then, the 50 wave numbers were operated by the mean impact value (MIV) algorithm to choose wave numbers whose absolute value of MIV greater than or equal to 25, to obtain the optimal characteristic spectral bands (4875.4-4836.9, 4223.6-4080.9 cm(-1)). And then, both internal cross and external validation were used to screen the number of hidden layer nodes of BP-ANN. Finally, the number 4 of hidden layer nodes was chosen as the best. At last, the BP-ANN model was found to enjoy a high accuracy and strong forecasting capacity for analyzing ZnO content in calamine samples ranging within 42.05-69.98%, with relative mean square error of cross validation (RMSECV) of 1.66% and coefficient of determination (R-2) of 95.75% in internal cross and relative mean square error of prediction (RMSEP) of 1.98%, R-2 of 97.94% and ratio of performance to deviation (RPD) of 6.11 in external validation.