摘要

Combining flux tower measurements with remote sensing or land surface models is generally regarded as an efficient method to scale up flux data from site to region. However, due to the heterogeneous nature of the vegetated land surface, the changing flux source areas and the mismatching between ground source areas and remote sensing grids, direct use of in-situ flux measurements can lead to major scaling bias if their spatial representativeness is unknown. Here, we calculate and assess the spatial representativeness of 15 flux sites across northern China in two aspects: first, examine how well a tower represents fluxes from the specific targeted vegetation type, which is called vegetation-type level; and, second, examine how representative is the flux tower footprint of the broader landscape or regional extents, which is called spatial-scale level. We select fraction of target vegetation type (FTVT) and Normalized Difference Vegetation Index (NDVI) as key indicators to calculate the spatial representativeness of 15 EC sites. Then, these sites were ranked into four grades based on FTVT or cluster analysis from high to low in order: (1) homogeneous; (2) representative; (3) acceptable; and (4) disturbed measurements. The results indicate that: (1) Footprint climatology for each site was mainly distributed in an irregular shape, had similar spatial pattern as spatial distribution of prevailing wind direction; (2) At vegetation-type level, the number of homogeneous, representative, acceptable and disturbed measurements is 8, 4, 1 and 2, respectively. The average FTVT was 0.83, grass and crop sites had greater representativeness than forest sites; (3) At spatial-scale level, flux sites with zonal vegetation had greater representativeness than non-zonal vegetation sites, and the scales were further divided into three sub-scales: (a) in flux site scale, the average of absolute NDVI bias was 4.34%, the number of the above four grades is 9, 4, 1 and 1, respectively; (b) in remote sensing pixel scale, the average of absolute NDVI bias was 8.27%, the number is 7, 2, 2 and 4, respectively; (c) in land model grid scale, the average of absolute NDVI bias was 12.13%, the number is 5, 4, 3 and 3. These results demonstrate the variation of spatial representativeness of flux measurements among different application levels and scales and highlighted the importance of proper interpretation of EC flux measurements. These results also suggest that source area of EC flux should be involved in model validation and/or calibration with EC flux measurements.