摘要

An endophytic fungus displaying considerable antimicrobial activity was isolated from stem tissue of an invasive plant species, Ipomoea carnea. The fungus was identified as Quambalaria sp. and confirmed by ITS rDNA sequence analysis. A BLAST search result of the sequence indicated 97 % homology with Quambalaria cyanescens. Crude metabolites of the fungus showed considerable antimicrobial activity against a panel of clinically significant microorganisms. The metabolites showed highest in vitro activity against Shigella dysenteriae followed by Escherichia coli and Candida albicans. Optimum metabolites production required neutral pH and a 15-day incubation period. Bark extracts amended with fungal media demonstrated higher antimicrobial activity. Optimum metabolites activity was recorded in Czapek Dox broth amended with leaf extracts (CDB + LE) of the host plant. The metabolites showed UV lambda-max in ethyl acetate at 284.6 nm with an absorbance value of 1.093. Phylogenetic tree generated by the Maximum Parsimony method showed clustering of our isolate with Q. cyanescens with supported bootstrap of 65 %. Species of Quambalaria are pathogens to Eucalyptus and occurrence of this fungus as endophytes support it to be a latent pathogen. Sequence base analysis and RNA secondary structure study also confirmed such a relationship. Secondary structural features like two hinges and a 5' dangling end were found to be unique to our isolate. These structural features can also be used as potential barcodes for this fungus. The findings indicate that invasive plant species can be a reliable source of novel endophytes with rich antimicrobial metabolites. The study also validates the assumption that endophytes can become parasites and share a close affinity.

  • 出版日期2013-6

全文