摘要

The possibility of limiting the global warming is strictly linked to the reduction of GHG emissions. Renewable energy both allows reducing emissions and permits to delay fossil fuel depletion. The anaerobic digestion of animal manure and energy crops is a promising way of reducing GHG emissions. In Italy agricultural biogas production was considerably increased; nowadays there are about 520 agricultural biogas plants. %26lt;br%26gt;The increasing number of biogas plants, especially of those larger than 500 kW(e) (electrical power), involves a high consumption of energy crops, large transport distances of biomass and digestate and difficulties on thermal energy valorization. %26lt;br%26gt;In this study the energetic (CED) and environmental (GHG emissions) profiles associated with the production of electricity derived from biogas have been identified. Three biogas plants located in Northern Italy have been analyzed. The study has been carried out considering a cradle-to-grave perspective and thus, special attention has been paid on the feedstock production and biogas production process. The influences on the results taking into account different plant sizes and feeding rate has been assessed in detail. %26lt;br%26gt;Energy analysis was performed using the Cumulative Energy Demand method (CED). The climate change was calculated for a 100-year time frame based on GHG emissions indicated as CO2 equivalents (eq) and defined by the IPCC (2006). %26lt;br%26gt;In comparison to the fossil reference system, the electricity production using biogas saves GHG emissions from 0.188 to 1.193 kg CO(2)eq per kWh(e). Electricity supply from biogas can also contribute to a considerable reduction of the use of fossil energy carriers (from -3.97 to 10.08 MJ(fossil), per kWh(e)). The electricity production from biogas has a big potential for energy savings and reduction of GHG emissions. Efficient utilization of the cogenerated heat can substantially improve the GHG balance of electricity production from biogas.

  • 出版日期2013-10-1