摘要

Timber-Framed (TF) masonry is a structural system characterised by high complexity and diversity. Limited experimental and analytical research has been carried out so far to explore their earthquake response, partly due to the complexity of the problem and partly due to the scarcity of TF buildings across the world. Here, a new practice-oriented non-linear (NL) macro-model is presented for TF masonry structures, based on the familiar diagonal strut approach with NL axial hinges in the struts. The constitutive law for the hinges (axial force vs. axial deformation) is derived on the basis of an extensive parametric analysis of the main factors affecting the response of TF masonry panels subjected to horizontal loading. The parameters studied are related to the geometric features of the panel and the strength of wood as well as the connections of the timber elements. The parametric analysis is performed using a micro-model based on Hill-type plasticity and it is shown that in the studied X-braced walls the masonry infills do not make a significant contribution to the lateral load resistance. Empirical expressions are proposed for the yield and maximum displacement and shear of a horizontally loaded TF panel. The model is verified against available experimental data, and is found to capture well the envelopes of the experimental loops. The model is readily applicable to NL static analysis (pushover) analysis for the assessment of the lateral load capacity of TF masonry buildings, as the number of input parameters for deriving the constitutive law has been limited to only five.

  • 出版日期2014-9-15