摘要

Pitch angles p of the large-scale magnetic fields (B) over bar of spiral galaxies have previously been inferred from observations to be systematically larger in magnitude than predicted by standard mean-field dynamo theory. This discrepancy is more pronounced if dynamo growth has saturated, which is reasonable to assume given that such fields are generally inferred to be close to energy equipartition with the interstellar turbulence. This "pitch angle problem" is explored using local numerical mean-field dynamo solutions as well as asymptotic analytical solutions. It is first shown that solutions in the saturated or kinematic regimes depend on only five dynamo parameters, two of which are tightly constrained by observations of galaxy rotation curves. The remaining three-dimensional (dimensionless) parameter space can be constrained to some extent using theoretical arguments. Predicted values of \p\ can be as large as similar to 40 degrees, which is similar to the largest values inferred from observations, but only for a small and non-standard region of parameter space. We argue, based on independent evidence, that such non-standard parameter values are plausible. However, these values are located toward the boundary of the allowed parameter space, suggesting that additional physical effects may need to be incorporated. We therefore suggest possible directions for extending the basic model considered.

  • 出版日期2015-7-20