摘要

For conjugated polymer materials, there is currently a major gap in understanding between the fundamental properties observed in single molecule measurements and the bulk electronic properties extracted from measurements of highly heterogeneous thin films. New materials and methodologies are needed to follow the evolution from single chain to bulk film properties as multiple chains begin to Interact. In this work, we used a controlled solvent vapor annealing process to assemble single chains of phenylene-vinylene conjugated polymers into aggregates that can be individually spectroscopically interrogated. This approach allowed us to probe the effects of interchain coupling in isolated conjugated polymer nanodomains of controlled size, By assembling these aggregates from building blocks of both pristine MEH-PPV and MEH-PPV derivatives containing structure-directing ortho- or para-terphenyl inclusions, we were able to control the ordering of these nanodomains as measured by single aggregate polarization anisotropy measurments. Depending on the individual chain constituents, these aggregates varied from highly anisotropic to nearly isotropic respectively facilitating or inhibiting interchain coupling. From the single chain fluorescence lifetimes, we demonstrated that these structure directing inclusions effectively break the phenylene-vinylene conjugation, allowing us to differentiate interchain electronic effects from those due to hyper-extended conjugation. We observed well-defined bathochromic shifts in the fluorescence spectra of the aggregates containing extensive interchain Interactions, indicating that low-energy exciton traps In MEH-PPV are the result of coupling interactions between neighboring chain segments. These results demonstrate the power of the synthetic inclusion approach to control properties at not Just the single chain level, but as a comprehensive approach toward ground-up design of bulk electronic properties.

  • 出版日期2012-1